Approved by GBCI for 1 CE Hour

Course Approval Number is 0090009310

Domestic Hot Water Recirculation

James M. Pleasants Company

www.jmpco.com

Domestic Hot Water Recirculation Learning Objectives

In this seminar you will learn to:

1. Describe why conserving water is important.
2. Calculate the recirculation flow rate.
3. Identify recirculation trouble areas.
4. Design a recirculation system with a sizing example.
5. Apply special design considerations for instantaneous water heater applications.
6. Identify ways to balance multiple riser flows.
7. Identify ways to recirculate buildings with pressure reducing valve.

Condensing Water Heater

Why?

Total USA water usage 1,430 gallons per person per day in 2000

1 ton steel $=65,000$ gallons

WATER

Private Usage

Southeast USA
182 gallons per day

WATER

What Is The Purpose of Hot Water Recirculation?

To Conserve Water By Providing Hot Water At The Fixture More Quickly

SERVICE WATER HEATING

SECTION 7.4 Mandatory Provisions

7.4.4 Service Water Heating System Controls

7.4.4.2 Temperature Maintenance Controls. Systems designed to maintain usage temperatures in hot-water pipes, such as recirculating hotwater systems or heat trace, shall be equipped with automatic time switches or other controls that can be set to switch off the usage temperature maintenance system during extended periods when hot water is not required.
7.4.4.3 Outlet Temperature Controls. Temperature controlling means shall be provided to limit the maximum temperature of water delivered from lavatory faucets in public facility restrooms to $110^{\circ} \mathrm{F}$.
7.4.4.4 Circulating Pump Controls. When used to maintain storage tank water temperature, recirculating pumps shall be equipped with controls limiting operation to a period from the start of the heating cycle to a maximum of five minutes after the end of the heating cycle.

Following is from section III, Chapter 7 of OSHA's technical manual. (http://www.osha.gov/dts/osta/otm/otm_iii/otm_iii_7.html\#5)

C. DOMESTIC HOT-WATER SYSTEMS.

1. Background. Domestic hot-water systems are frequently linked to Legionnaires' outbreaks.

Water heaters that are maintained below $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ and contain scale and sediment tend to harbor the bacteria and provide essential nutrients for commensal micro-organisms that foster growth of L. pneumophila.
2. Design. Water systems designed to recirculate water and minimize dead legs will reduce stagnation.

3. Maintenance.

a. To minimize the growth of Legionella in the system, domestic hot water should be stored at a minimum of $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$
c. Domestic hot-water recirculation pumps should run continuously. They should be excluded from energy conservation measures.

post-gazette.com

Third vet's death tied to Legionnaires'

His wife blames water from VA hospital in Oakland
December 4, 2012 12:11 am
By Sean D. Hamill / Pittsburgh Post-Gazette
The wife of a Vietnam War Army veteran who died Oct. 23 in Erie believes her husband may have died after contracting Legionnaires' disease from the water system at the VA hospital in Oakland.

If John McChesney, 63, did die after contracting the pnemonia-like disease at the University Drive facility, that potentially makes him the third patient in the past two years to die after getting Legionnaires' disease there.

Four Things to Remember about a Hot Water Recirculation System

Number 1

The recirculation flow rate will be established by supply piping heat loss to the farthest faucet or riser at a given delta temperature

Number 2

Recirculation return line heat loss need not be considered

Number 3

The required flow to compensate for the heat loss of insulated copper pipe is typically a low GPM flow rate

Number 4

The recirculation return line will be (most of the time) equal in length to supply main length

Potential recirculation trouble areas are:

- Water Heater Temperature Control
- Unbalanced Riser Flows
- Recirculation with Reducing Valves

Recirculation Pump and Its Control

Domestic HW recirculation pumps must be constructed so that all working parts exposed to domestic water are brass, bronze, stainless steel or non-ferrous in order to resist the corrosive attack of oxygenated fresh water. Conventional iron body Hydronic System pumps should not be used!

Basic Recirculation Design Procedures

- Determine Required Recirculation Flow Rate.
(based on heat loss of supply pipe)
- Size Recirculation Line
- Determine Flow-Friction Head Loss in Recirculation Line, Heater, Supply Pipe and etc.
- Select Pump Based on Flow Requirement and Head Loss.

Example Problem: Apartment Building

- Each Apartment Requires 3.75 FU
- Eight (8) Apartments per riser and

Twelve (12) risers

- Each Riser 30 FU X 12 Risers = 360 FU
- 360 FU = 100 GPM
- There is 25 ft . between each riser for a total of 300 feet of supply piping

Apartment Building Example

(Supply pipe 300 feet long)

Simple Recirculation System

The Heating Load for Hot Water Recirculation

Load (BTU/Hr) $=$ GPM $\times 500 \times \Delta T$

What is design temperature Drop?
($10^{\circ} \Delta \mathrm{T}$ Good Design)

Simple Recirculation System with Non-Recirculated Riser;
Riser Run-out Length (A, B, C, D, E) Should Not Exceed Approximately 50 Ft .

SECTION 607 HOT WATER SUPPLY SYSTEM

607.2 Hot water supply temperature maintenance. Where the developed length of hot water piping from the source of hot water supply to the farthest fixture exceeds 100 feet (30480 mm), the hot water supply system shall be provided with a method of maintaining the temperature in accordance with the International Energy Conservation Code.
[E] 607.2.2 Hot water system controls. Automatic circulating hot water system pumps or heat trace shall be arranged to be conveniently turned off, automatically or manually, when the hot water system is not in operation.
607.2.3 Recirculating pump. Where a thermostatic mixing valve is used in a system with a hot water recirculating pump, the hot water or tempered water return line shall be routed to the cold water inlet pipe of the water heater and the cold water inlet pipe or the hot water return connection of the thermostatic mixing valve.

CHAPTER 6 WATER USE EFFICIENCY 6.3 Mandatory Provisions

6.3.2.2 Appliances

TABLE 6.3.2.1 Plumbing Fixtures and Fittings Requirements

Plumbing Fixture

Maximum

Water closets (toilets) - flushometer valve type	Single flush volume of $1.28 \mathrm{gal}(4.8 \mathrm{~L})$
Water closets (toilets) - flushometer valve type	Effective dual flush volume of $1.28 \mathrm{gal}(4.8 \mathrm{~L})$
Water closets (toilets) - tank-type	Single flush volume of $1.28 \mathrm{gal}(4.8 \mathrm{~L})$
Water closets (toilets) - tank-type	Effective dual flush volume of $1.28 \mathrm{gal}(4.8 \mathrm{~L})$
Urinals	Flush volume of $0.5 \mathrm{gal}(1.9 \mathrm{~L})$
Public lavatory faucets	Flow rate $-0.5 \mathrm{gpm}(1.9 \mathrm{~L} / \mathrm{min})$
Public metering self-closing faucet	0.25 gal $(1.0 \mathrm{~L})$ per metering cycle
Residential bathroom lavatory sink faucets	Flow rate $-1.5 \mathrm{gpm}(5.7 \mathrm{~L} / \mathrm{min})$
Residential kitchen faucets	Flow rate $-2.2 \mathrm{gpm}(8.3 \mathrm{~L} / \mathrm{min})$
Residential showerheads	Flow rate $-2.0 \mathrm{gpm}(7.6 \mathrm{~L} / \mathrm{min})$
Residential shower compartment $($ stall $)$ in dwelling units and guest rooms	Flow rate from all shower outlets total of $-2.0 \mathrm{gpm}(7.6 \mathrm{~L} / \mathrm{min})$

Low Flow Fixture Problem

Public metering self-closing faucet 0.25 gal (1.0 L) per metering cycle.

Will you ever get hot water if light usage?
(. $35 \mathrm{ft} / \mathrm{sec}$ in a .5 inch copper pipe)

Common Problem because of low flow!
Shorter Run out lengths? (less 50 ft)
Electric heat trace the run outs?

6.3.4 Hot Water Distribution

6.3.4.1 Efficient Hot or Tempered Water Distribution Systems. For the purposes of this section, sources of hot or tempered water include water heaters, boilers, hot water circulation loops, and electrically heat-traced pipe. The volume of water in the piping between water heaters or boilers and fixture fittings the serve shall not exceed 32 ounces (0.945 L). The volume of water contained in fixture branch piping that connects to a hot water circulation loop or electrically heat- traced pipe shall not exceed 16 ounces (0.47 L). The volume shall be calculated in accordance with Table 6-3.

What is heat loss of supply pipe?

Simple Recirculation System

Temperature Drop	BTU/GPM Relationship
10°	$5,000 \mathrm{~B} / \mathrm{Hr} .=1 \mathrm{GPM}$
15°	$7,500 \mathrm{~B} / \mathrm{Hr} .=1 \mathrm{GPM}$
20°	$10,000 \mathrm{~B} / \mathrm{Hr} .=1 \mathrm{GPM}$

BTUH heat loss per 100 ft for tubing and steel pipe.

Pipe or Tube Size	Insulated Copper Tube or Steel Pipe	Non-Insulated Steel Pipe	Non-Insulated Copper Pipe
$1 / 2^{\prime \prime}$	1600	4,000	2,300
$3^{3 / \prime}$	1800	5,000	3,000
$1^{\prime \prime}$	2000	6,000	4,000
$11 / 4^{\prime \prime}$	2400	7,500	4,500
$111^{\prime \prime}$	2600	8,500	5,500
$2^{\prime \prime}$	3000	11,000	6,500
$21 / 2^{\prime \prime}$	3400	12,000	8,000
$3^{\prime \prime}$	4000	15,000	9,500
$4^{\prime \prime}$	4800	19,000	12,000
$5^{\prime \prime}$	5700	22,500	
$6^{\prime \prime}$	6600	26,000	

Using insulated copper tube, 25 ft . length between riser take-off points, supply line heat loss to the farthest riser take-off is as follows:

Heat loss, BTUH

| B - \#1 | $2-1 / 2^{\prime \prime}$ | 30 ft. | $3400 / 100$ | $3400 \times 30 / 100=1020$ |
| :--- | :--- | :--- | ---: | :--- | :--- |
| $\# 1-\# 4$ | $2-1 / 2^{\prime \prime}$ | 75 ft. | $3400 / 100$ | $3400 \times 75 / 100=2550$ |
| $\#$ - \#10 | $2 "$ | 150 ft. | $3000 / 100$ | $3000 \times 150 / 100=4500$ |
| $\# 10-\# 11$ | $1-1 / 2^{\prime \prime}$ | 25 ft | $2600 / 100$ | $2600 \times 25 / 100=650$ |
| $\# 11-\# 12$ | $1-1 / 4^{\prime \prime}$ | 25 ft | $2400 / 100$ | $2400 \times 25 / 100=600$ |

TOTAL SUPPLY LINE HEAT LOSS = 9320 BTUH

Supply Pipe Heat Loss is 9,320 BTUH

Simple Recirculation System

Required Water Flow:

WATER TEMP: 140 DEG From Water Heater 130 DEG At Farthest riser 10 DEG Delta Temperature

1 gpm flow Will Convey 5000 BTUH
Recirculation return flow need =

$$
9320 / 5000=1.87 \mathrm{gpm}
$$

A 3/4" copper line is the proper size selection for 1.9 gpm
The friction loss will be about 1.4 ft per 100 ft .

Required Pump Head:

Recirculation line Length $=300 \mathrm{ft}$
Pipe Pressure Drop = $300 \mathrm{ft} \times 1.4 / 100=4.2 \mathrm{ft}$
Check valve pressure drop $=1.0 \mathrm{ft}$.

Supply Pipe (negligible)
$=0$
Heater loss (negligible)
$=0$
Total friction head loss $=5.2 \mathrm{ft}$.

Note: The heat loss chart is based on $140^{\circ} \mathrm{F}$ water and $70^{\circ} \mathrm{F}$ ambient air. To convert to approximate pipe heat loss at other water temperatures by using hot water to air difference.

For example, determine heat loss for 2-1/2" insulated copper pipe using $120^{\circ} \mathrm{F}$ water:

$3400 \times \underline{(120-70)}=3400 \times \underline{50}=2431 \mathrm{BTUH} / 100 \mathrm{ft}$. (140-70) 70

Recirculation Return Line

Simple Recirculation System

Simple Recirculation System Selection Table

Recirculating With No Return Line

No Return Line Required!

Typical Installation Scheme

Typical Installation "Tankless Water Heater"

wireless

Automatic hot water recirculation through use of temp set point and wireless demand signaling of pump by valve

Features:

- Temperature and timer controlled
- Operated via wireless RF communication, ranging approximately 150 Ft between the pump \& valve
- Valve operates using two (2 AA batteries)
- Optional push button start

Benefits:

- Easy installation
- No electrical outlet required under the sink

wireless....how it works!

Energy efficient uses as little as 14 watts to operate

Automatic hot water recirculation through use of temp set point and wireless demand signaling of pump by valve

ŌŌ

Watch out for water heater temperature control

Nothing Beats Storage

Domestic hot water recirculation: I

Reprinted from the October 1985 issue of HEATING/PIPING/AIR CONDITIONING. Copyright 1985 by Penton Publishing, a division of Pittway Corp.

By: Gil Carson,
Director, Technical Services,
ITT Fluid Handling Div.,
Skokie, III.

An increase in instantaneous heater flow rate during the light load draw will increase light load temperature control stability. This is because with a high flow rate, the controller needs only to measure temperature change to establish the load set point for the control device.

Instantaneous heater flow rate during periods of light load draw should be increased to about 25 percent of the expected Hunter flow rate.

Dead End Service Main Steam Valves (Leak a little)

- Dead end service Steam Control valves are allowed a small amount of leakage!
- Maximum allowed is $.01 \%$ of max capacity to meet standard for tight shut off
- Can be controlled or reduced by lapping the seats of the valve
- Small amount of steam but can be a problem if more than radiant heat loss of station
- ASME Relief valves may relieve under no-flow or no loan conditions
- Domestic Water applications may see elevated out of control supply temperatures

Instantaneous Heater May Need Flow Increase Over Minimal Required Recirculation Flow For Light Load Draw Temperature Control.

Oversized Return Line

Bypass Line in Equipment Room

Supply Piping Resized to 2" Minimum with 2" Recirculation Return for 25 GPM Flow

ŌŌ

Watch out for unbalanced riser flows

You must balance

Lead Free Balance Valve

Notes:

(1) Hi Rise
(A) 10' Between Floor
(B) $10 \frac{1}{4}$ F.U. Each Take-Off From Riser
(2) Low Rise
(A) 25' Between Risers
(B) 30 F.U. Riser

Multi-Circuited Recirculation Main Example

Step 1. Determine Recir. Flow Rate: Low-rise supply main is 300 ft . As before, at 10 deg delta T 9320/5000 = 1.8 gpm High-rise supply main is 220 ft . 6000/5000 = 1.3 gpm

Step 2. Size the Recirculation Lines
Low-rise: $3 / 4$ " for 1.9 gpm at $1.4 \mathrm{ft} / 100 \mathrm{ft}$ High-rise: $1 / 2$ " for 1.3 gpm at $4.4 \mathrm{ft} / 100 \mathrm{ft}$

Step 3: Determine Pump Head:
Low-rise return line 300 ft .
Pipe head loss $=300 \times 1.4 / 100=4.2 \mathrm{ft}$
Check valve
$=1.0 \mathrm{ft}$
Total head loss $=5.2 \mathrm{ft}$

Highest return line 70 ft .
Pipe head loss $=70 \times 4.4 / 100=3 \mathrm{ft}$.
Check valve
$=1 \mathrm{ft}$.
Total head loss $=4 \mathrm{ft}$.

Step 4. Select Recirculation Pump.
For pump serving both circuits, add flows and select the highest head loss.

Flow: $1.8+1.3=3.1 \mathrm{gpm}$
Head: Highest at 5.2 ft .
Pump capacity: 3.1 gpm @ 5.2 ft.

Notes:

(1) Hi Rise
(A) 10' Between Floor
(B) $10 \frac{1}{4}$ F.U. Each Take-Off From Riser
(2) Low Rise
(A) 25' Between Risers
(B) 30 F.U. Riser

Recirculation Line Sizing and Pump Selection

Even though the return line is 70 ft , the supply line is 220 ft . Based on head loss a $1 / 2^{\prime \prime}$ return line was selected. However, since the supply line is 220 ft , we recommend a $3 / 4$ " return line be used.

Notes:

(1) Hi Rise
(A) 10' Between Floor
(B) $10 \frac{1}{4}$ F.U. Each Take-Off From Riser
(2) Low Rise
(A) 25' Between Risers
(B) 30 F.U. Riser

Recirculation Line Sizing and Pump Selection ${ }^{56}$

Two observations:

1. Many of the recirculation problems we have seen are on multi-circuited recirculation systems. A main HW loop and loops to remote showers or lavatories. These must be balanced if hot water is to ever get to these fixtures.
2. Do not use a $1 / 2$ " return line on any system of any size. A minimum 3/4" return line size will eliminate many problems.

ŌŌ

Watch out for unbalanced riser flows

You must balance

Lead Free Balance Valve

8 Story Hotel Alcoa, TN

Worlds Fair
(No Balance Valves) Startup Problems
Which is the Free Hotel Room?

Balance
Multiple Riser Recirculation Example

Balance
Multiple Riser Recirculation Example

Use Lead Free balance valve to balance and control water flow in risers and/or distribution loops.

Use flow limiter devices to balance and control water flow in risers and/ or distribution loops.

Use Thermal Setters (fixed or adjustable temperature) devices to balance and control water flow in risers and/or distribution loops.

Lead Free AB1953

(California Assembly Bill 1953)

This bill would, commencing on January 1, 2010, revise this prohibition to apply to any pipe or plumbing fitting, or fixture intended to convey or dispense water for human consumption, but would exclude from this prohibition specified devices.

Existing law defines lead free as not more than 8% lead when used with respect to pipes and fittings and not more than 4% by dry weight with respect to plumbing fittings and fixtures.

This bill would, commencing on January 1, 2010, revise the term "lead free," for purpose of manufacturing, industrial processing, and conveying or dispensing water for human consumption, to refer not to the lead content of pipes and pipe fittings, plumbing fittings, and fixtures but to a weighted average lead content of the wetted surface area of the pipes, fittings, and fixtures of not more than 0.25%, to be determined pursuant to a prescribed formula.

Arrangements of Hot Water Circulation Lines

ŌŌ

Watch out for recirculation with reducing valves

Never recircuit across a pressure reducing valve

 Worlds Fair

(Circulating across PRV) Startup Problems
Which is the Free Hotel Room?

High Rise Hotel

Building Gauge Pressures When Recirculation Pump Operates

Two Heaters

"A Good Solution"

"Vue" Condos
Charlotte, NC
(60 Stories Plus)

OPTION 2 - HOT WATER CIRCULATION IN HIGH RISE

- PLUMBING APPLICATION -
- RECIRCULATION WITHIN LOW PRESURE ZONE USING STAINLESS STEEL BRAZED PLATE HEAT EXCHANGER - ELIMINATES NEED FOR HIGH PRESSURE/HIGH HEAD RETURN PUMP.
- SERVICE/ISOLATION, CHECK VALVES RECOMMENDED AT PUMP \& HEAT EXCHANGER.
- HEAT EXCHANGER RELIEF VALVE \& THERMAL EXPANSION TANK AS REQUIRED PER LOCAL CODES.

OPTION 4 - HOT \& COLD WATER CIRCULATION IN HIGH-RISE

Typical Installation

Single Temperature
 Recirculation System

Variable Speed Pressure Boosting

James M. Pleasants Company

www.jmpco.com

Variable Speed Pressure Boosting Learning Objectives

In this seminar you will learn too:

1. Identify different methods buildings were supplied domestic water.
2. Utilize a domestic water pressure booster selection procedure to calculate the required flow and pressure.
3. Properly size and locate a hyrdo-pneumatic tank.
4. To compare the advantages of variable speed versus constant speed pressure boosting.
5. Understand the new pressure booster requirements listed in ASHRAE 90.1 and DOE Building code 2013.

Outline of Presentation

- Historical Review
- System Design Example
- Required System Flow and Pressure
- Pressure Booster Selection Procedure
- Hydro-Pneumatic Tanks
- Variable vs. Constant Speed
- ASHRAE 90.1 and DOE Building Code 2013

Plumbing Water History Systems

1700 BC - Island of Crete-Minoan Palace had Terra Cotta hot and cold water supply piping and separate sewers constructed of stone.

1491 BC Approx. - Deuteronomy 23:12-14 (New Intermational Version) (The First Latrine)
${ }^{12}$ Designate a place outside the camp where you can go to relieve yourself. ${ }^{13}$ As part of your equipment have something to dig with,...

700 BC Approx. - "Plumbum" - Latin for "Lead" - which is the origin of the word "Plumbing".
52 AD - Romans had 220 miles of aqueducts to supply 300 gallons of water for every citizen.

79 AD - The Romans of Pompeii had water closets with a cistern to provide flush water and a separate sewer system. Lead and tile pipe was used for supply water. Public baths had hot water and were heated.

1596 - Sir John Harrington invented a water closet for Queen Elizabeth of England.
1775 - In England Alexander Cummings reinvented Harrington's water closet.
1836 - In England Thomas Crapper is born. He was a plumber until 1904 and his company operated under the Crapper name until 1966.

1850 - privy - a room equipped with toilet (a private place)

Properties of Water

1 Psi Pressure = 2.31 ft Elevation

(For Water Only)

Domestic Water Supply History

- Roof Tanks (Pre 1945 - Gravity)
- Hydro - Pneumatic Tank (1948-1952)
- Constant Speed Pump PRV System
- Variable Speed Systems

1829 Boston Tremont Hotel first with indoor plumbing with steam driven pump and roof tank.

Roof Tanks

- Basic Design Pre-1948
- No Reliable Mechanical Booster System
- Pumps Could Fail - You Still Had Water
- Did Not Use Basement Space
- Stable Building Supply Pressure
- Simple to Design and Operate
- Vented - Non Code Tanks
- Run Pump Off Peak
- Fire Protection

Hydro-Pneumatic Tanks

- Between 1952 and 1957
- Two 100\% Pumps with Air Compressor
- Higher System Pressures
- Expensive Large Tanks should be Code
- Expensive Floor Space Rooftop and Basement
- High Pneumatic Tank Maintenance
- Corrosion Problem Due to Oxygen

Control for Hydro-Pneumatic Tanks

Constant Speed Pump and PRV System

- First in 1957 - Constant Pressure
- About 1963 Staged Pumps
- Two Pumps Two at 50\%
- Three Pumps Lead Pump 20\% Two at 40%

Variable Speed Systems

2007

- Now Reliable Adjustable Frequency Drives

First Cost are Dropping (Competitive with Constant Speed)

Introduction

of
 System Design Example

100 Room Apartment Design

$F_{\text {.ixture }} U_{\text {.nit }}$ and $G P M$

Example: Fixture unit counts determine your GPM flow rates.

100 Room Apartment

- Elevation of 116 ft to top
- 10 Stories high - 10 apartments per floor

Critical Fixture

- Each apartment has one bathroom group and kitchen sink
- City Pressure at Street Level Static 55 psi
- Minimum City Water Pressure is 40 psi
- Backflow Preventer and Water Meter Required
- *Flush Tanks Used - Require 20 psi at the top
*CAUTION: Specific Flow and Pressure Requirements will vary

Note: First few floors with street pressure?

Domestic Water Supply GPM and Fixture Units

- Demand is based on Fixture Units

(Check your local code on F.U.)

Fixture Type	Fixture Unit/Fixture		CW Fixture Units/Fixture		HW Fixture Units/Fixture	
	Old	New	Old	New	Old	New
WC/Public - Flush Valve	10	-	10	-		-
WC/Public - Flush Tank	5	-	5	-		-
Pedestal Urinal/Public	10	-	10	-		-
Stall - Wall Urinal/Public	5	-	5	-		-
Stall - Wall Urinal/Public	3	-	3	-		-
Lavatory/Public	2	-	1.5	-	1.5	-
Bathtub/Public	4	-	3	-	3	-
Shower Head/Public	4	-	3	-	3	-
Service Sink/Office	3	-	2.25	-	2.25	-
Kitchen Sink/Hotel, etc.	4	-	3	-	3	-
WC/Private Flush Valve	6	-	6	-		-
WC/Private Flush Tank	3	2.2	3	2.2		-
Lavatory/Private	1	7	0.75	5	0.75	5
Bathtub/Private	2	1.4	1.5	1.0	1.5	1.0

Tennessee Code Effective 3/1/07 Notice of Intention to Adopt Building Codes 2006 Edition of the International Plumbing Code

State Plumbing Codes

Each Apartment 8 Fixture Units

100 Apartments $\times 8$ F.ixture U. nits $=800$ F. U.

Per Hunter Curve Flush Tanks
800 F.U. = Demand of 180 GPM Kitchen Sink

One Bathroom w/Flush Tank and Separate Shower (Private)

$$
\begin{gathered}
\frac{\text { H.W. }}{\text { 3.75 F.U. }} \quad \text { C.W. } \\
\text { Peak D.U. } \frac{\text { Combination }}{8.00 \text { F.U. }} \\
\text { Pemand is } 180 \mathrm{GPM}
\end{gathered}
$$

Full Body Showers

Flow, Pressure and Riser Pipe Sizes, and Water Heater Sizing

Critical

Canopy
 Showerhead

Flow, Pressure and Riser

Critical

 Pipe Sizes, and Water Heater Sizing16×20
59 psi 27.8 gallons per minute

Prosun Shower

Critical

Flow, Pressure and Riser Pipe Sizes, and Water Heater Sizing

The \$100,000 Shower

18 shower heads 6 zones

65 gallons of water per minute
250 gallons of water after 5 minutes

Is your Cooling Tower on the Roof?

Evaporation $=500$ Tons $\times .03=15$ GPM Full load only
Drift Loss $=1500$ GPM $\times .0002=.3$ GPM
*Estimated Blow down rate = Evaporation Rate = 15 GPM

* Chemical treatment will determine the actual requirements

Total makeup per 500 ton tower $=30.3$ GPM Full load only Based on a minimum pressure of 15 psi and a maximum of 50 psi Pipe size $1 \frac{1}{2}$ " Or size on cooling tower makeup size per cell ($2^{\prime \prime}$)

CHAPTER 6 WATER USE EFFICIENCY 6.3 Mandatory Provisions

6.3.2.2 Appliances

TABLE 6.3.2.1 Plumbing Fixtures and Fittings Requirements

Plumbing Fixture

Maximum

Water closets (toilets) - flushometer valve type	Single flush volume of $1.28 \mathrm{gal}(4.8 \mathrm{~L})$
Water closets (toilets) - flushometer valve type	Effective dual flush volume of $1.28 \mathrm{gal}(4.8 \mathrm{~L})$
Water closets (toilets) - tank-type	Single flush volume of $1.28 \mathrm{gal}(4.8 \mathrm{~L})$
Water closets (toilets) - tank-type	Effective dual flush volume of $1.28 \mathrm{gal}(4.8 \mathrm{~L})$
Urinals	Flush volume of $0.5 \mathrm{gal}(1.9 \mathrm{~L})$
Public lavatory faucets	Flow rate $-0.5 \mathrm{gpm}(1.9 \mathrm{~L} / \mathrm{min})$
Public metering self-closing faucet	$0.25 \mathrm{gal}(1.0 \mathrm{~L})$ per metering cycle
Residential bathroom lavatory sink faucets	Flow rate $-1.5 \mathrm{gpm}(5.7 \mathrm{~L} / \mathrm{min})$
Residential kitchen faucets	Flow rate $-2.2 \mathrm{gpm}(8.3 \mathrm{~L} / \mathrm{min})$
Residential showerheads	Flow rate $-2.0 \mathrm{gpm}(7.6 \mathrm{~L} / \mathrm{min})$
Residential shower compartment $($ stall $)$ in dwelling units and guest rooms	Flow rate from all shower outlets total 108 of $-2.0 \mathrm{gpm}(7.6 \mathrm{~L} / \mathrm{min})$

Required System Pressure

100 Room Apartment

- Elevation of 116 ft to top
- 10 Stories high - 10 apartments per floor
- Each apartment has one bathroom group and private shower
- Typical City Pressure at Street Level Static 55 psi
- Minimum City Water Pressure is 40 psi
- Backflow Preventer and Water Meter Required
- Flush Tanks Used - Require 20 psi at the top

Critical Fixture

Note: First few floors with street pressure?

Pressure Booster Selection Procedure

A - Ask for a flow and pressure test at the supply connection to your building. Have the test results confirmed to you in writing and certified by the Domestic Water supplier.

B - Refer to state and local plumbing codes where applicable to determine gpm demand. Most codes, ASPE, ASHRAE and Bell \& Gossett use the same fixture unit counts from a National Bureau of standard report: BMS79 by R.B. Hunter; a flow probability curve (Hunter's Curve) is then applied to get the net gpm demand. Refer to pages 1-5 of bulletin TEH-1175 or pages 3-6 of bulletin TEH-1096.

C - Hot or cold water demand will be 75% of the total demand. Calculate total fixture units and separate into hot and cold water demand.

D - Make a simple system sketch showing pipe mains, main pipe branches, water meter, backflow preventer, water heaters, reducing valves, recirculation lines and pumps, system elevation, required minimum fixture pressure at the high point, system elevation in feet or psi and location of the pressure booster.

E - Size all pipe based on local codes, your firms limitation, a suggestion is a maximum pressure drop of $5 \mathrm{psi} / 100$ ' and a maximum velocity of $8 \mathrm{ft} / \mathrm{sec}$, most local engineering offices use the same with a limit of $10 \mathrm{ft} / \mathrm{sec}$ velocity. ASPE chapter 3 "Cold Water Systems" suggest 6 or $7 \mathrm{ft} / \mathrm{sec}$ maximum. ASHRAE chapter 36 page 36.112005 fundamentals states a maximum of $10 \mathrm{ft} / \mathrm{sec}$. Try using figure 3.3 thru figure 3.6 pages $17-21 \mathrm{TEH}-1096$. Also, table 3.7 and 3.8 based on a maximum of $5 \mathrm{psi} / 100$ ' of drop, on page 23. Please note that fixture units are included on both.

F - Calculate the required pressure boost using attached form.
G - Determine the number of pumps for system. Run ESP-Plus to determine energy cost for constant speed booster system vs. variable speed system. Select type of system. Refer to section \#4 for Bell \& Gossett Package Constant Speed Pressure Booster selection. Size and specification. Refer to section \#6 for a Bell \& Gossett Package Variable Speed Pressure Booster selection with dimensions and weights.
H-Write pressure booster specification.

COPPER TUBING: SIZE,PRESSURE DROP \& VEL. VS. FXTURE UNITS*
 C. W. FIXTURE UNITS WITH FLUSH VALVES ONLY

1-800-365-9010 * BASED ON HUNTERS' EVALUATION

HOT WATER FIXTURE UNITS AND/OR COLD WATER FIXTURE UNITS WITH FLUSH TANKS

PVC Pipe Sizing Applications are Available

iPad \& iPhone Versions

- Available free from iTunes App Store
- Greater range of pipe sizes
- Addition of PVC Pipe
- Includes English \& Metric Units
- Handles fluids other than water

Minimum Pressure at Critical Fixture $=20$ PSI

$$
\begin{gathered}
\text { Pipe Friction @ } 5 \text { PSI/100 ft. = } 6 \mathrm{PSI} \\
\text { Elevation } 115 \mathrm{ft}=50 \mathrm{PSI} \\
\text { Backflow Preventer }=12 \mathrm{PSI} \\
\text { Water Meter }=8 \mathrm{PSI}
\end{gathered}
$$

Total Required Pressure = 96 PSI
 Minimum City Pressure $=40$ PSI

Required System Pressure Boost = 56 PSI
Pressure Booster Selection ProcedureJob Name:
\qquad Date: \qquad
Total Fixture Units \qquad F.U. Hunter Curve Demand \qquad GPM
Minimum Pressure at the System Top
\qquadPSI(Pressure Drop of Greatest Pressure Drop Fixture)(Typically 20 to 25 PSI Flush Tanks and Dishwashers)(Typically 30 to 35 PSI Flush Valves) (Low Flush Valves 35 psi)
Pipe Friction at $5 \mathrm{PSI} / 100 \mathrm{ft}$ Longest Run

\qquad PSI
(Add 20\% for Tees, Elbows, and Fittings)

\qquadPSI
Elevation Above Water Supply Conn.
Divide Feet by 2.31 ft/PSI to get PSI
Water Heater if Used (2.31 ft/PSI)

\qquad
PSI
System Pressure Reducing Valve or Check Valve

\qquad
PSI
Back Flow Preventer (Typically 10 to 12 PSI)

\qquad PSI
Water Meter (Typically 5 to 6 PSI)

\qquad PSI
Thermostatic Mixing Valve (Typically 5 to 20 psi)

\qquad PSI
Miscellaneous (Pump Suction Valves, Filters, Strainers, Water Softner, etc.)

\qquad PSI
Total Required System Pressure PSI
*Minimum City Suction Pressure(-)
\qquad*Required System Pressure Boost
\qquadPSI
PSI * 2.31 ft/PSI Equals Head in Feet

\square ftNote: *Pressure Booster Selections Include The Pressure Reducing Valve Drop.115*Confirm Minimum City Pressure in Writing for the Project Data File. 21507CE
Pressure Booster Selection ProcedureJob Name:

Date:
Total Fixture Units 800 F.U. Hunter Curve Demand 180 GPM
Minimum Pressure at the System Top(Pressure Drop of Greatest Pressure Drop Fixture)(Typically 20 to 25 PSI Flush Tanks and Dishwashers)(Typically 30 to 35 PSI Flush Valves) (Low Flush Valves 35 psi)20PSI
Pipe Friction at 5 PSI/100 ft Longest Run 6 PSI
(Add 20\% for Tees, Elbows, and Fittings)
Elevation Above Water Supply Conn.50
Divide Feet by $2.31 \mathrm{ft} / \mathrm{PSI}$ to get PSI
Water Heater if Used (2.31 ft/PSI)
\qquad PSI
System Pressure Reducing Valve or Check Valve

\qquad
PSI
Back Flow Preventer (Typically 10 to 12 PSI) 12 PSI
Water Meter (Typically 5 to 6 PSI)8 PSI
Thermostatic Mixing Valve (Typically 5 to 20 psi)

\qquad PSI
Miscellaneous (Pump Suction Valves, Filters, Strainers, Water Softner, etc.)

\qquad
PSI

Total Required System Pressure	96
*Minimum City Suction Pressure	(-) 40
*Required System Pressure Boost	56
PSI * 2.31 ft/PSI Equals Head in Feet	

Hydro-Pneumatic Tanks

- Hydro-pneumatic tanks are primarily used in a domestic water system for draw down purposes when the pressure booster system is off on no-flow shutdown.
- Without the tank, the booster would restart upon the slightest call for flow such as a single toilet being flushed
- These factors prevent booster pump short cycling

Constant \& Variable Boosters

Hydro-Pneumatic Tank

Beoster Pump System

Hydro-Pneumatic Tanks

Hydro-pneumatic tanks are primarily used in a domestic water system for draw down purposes when the pressure booster system is off on no-flow shutdown (NFSD). To prevent pump short cycling and to save energy.

Constant \& Variable

Hydropneumatic Tank Sizing
 is Dependent on Two Factors

1. How long you wish to keep the pumps off in a no-flow condition.
2. The tank location in relation to the pressure booster pumps.

- Discharge Header Pressure Booster (most common)
- Top of the System (smallest tank lower working pressure) (best location)

Discharge Header Pressure Booster

 Booster size 124 GPM @ 58 PSIGLocated at the discharge of the pressure booster
Easier to install (vs. top of system)
Insure bldg pressure < tank pressure rating Typically 150 or 200 psi

PRV not required for variable speed application

Acceptance Volume for Various Types of Buildings (Gallons)

con				$\begin{aligned} & \bar{\circ} \\ & \stackrel{\circ}{ㅇ} \\ & \text { in } \end{aligned}$			증 0 0 0 0 0	끈 호	¢
$\frac{\vec{~}}{\omega}$	50	8	60	15	15	23	11	15	38
$\stackrel{\square}{0}$	100	15	120	30	30	45	22	30	75
.	150	23	180	45	45	68	33	45	113
O	200	30	240	60	60	90	44	60	150
$\underset{\underset{\sim}{\infty}}{ }$	250	38	300	75	75	113	55	75	188
O	300	45	360	90	90	135	66	90	225
$\begin{aligned} & \bar{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	350	53	420	105	105	158	77	105	263
	400	60	480	120	120	180	88	120	300
	450	68	540	135	135	203	99	135	338
	500	75	600	150	150	225	110	150	375

Based on B\&G TEH-1096 page 34

Fill Pressure equals Initial Pressure

Tank at Discharge of Booster

(Page 35)

Booster size 124 GPM @ 58 PSIG 40 PSIG Minimum Suction
 15 Minute Booster Shutdown

TABLE 1 - DRAWDOWN FACTORS

(Use Gauge Pressure)

$\begin{gathered} \mathrm{P}_{0} \\ \text { MAXIMUM } \end{gathered}$	P_{f} - MINIMUM OPERATING PRESSURE AT TANK (PSIG)											
$\begin{gathered} \text { PRESSURE } \\ \text { PSIG } \end{gathered}$	5	10	12	15	20	25	30	35	40	45	50	55
10	0.202	-						1				
12	0.262	0.075	-					'				
15	0.337	0.168	0.101	-				'				
20	0.432	0.288	0.231	0.144	-			1				
25	0.504	0.378	0.328	0.252	0.126			+		nk a	Hig	
27	0.527	0.408	0.360	0.288	0.168	-		'				
30	0.560	0.447	0.403	0.336	0.224	0.112	-	,				
35	0.604	0.503	0.463	0.403	0.302	0.202	0.101	t				
40	0.640	0.548	0.512	0.457	0.366	0.274	0.183	0.09				
45	0.670	$0-586$	-0.553	-0-503	-0.419	-0.335-	- 0.254	0.168	0.084			
50	0.696	0.618	0.587	0.541	0.464	0.386	0.309	0.232	0.155	0.078	-	
55	0.717	0.646	0.617	0.574	0.502	0.430	0.359	0.287	0.215	0.144	0.072	-
60	0.736	0.669	0.643	0.602	0.536	0.469	0.402	0.335	0.268	0.201	0.134	0.06
65	0.753	0.690	0.665	0.627	0.565	0.502	0.439	0.376	0.314	0.251	0.188	0.12
70	0.767	0.708	0.685	0.649	0.590	0.531	0.472	0.413	0.354	0.295	0.236	0.177
75	0.780	0.725	0.702	0.669	0.613	0.558	0.502	0.446	0.390	0.333	0.279	0.223
80	0.792	0.739	0.718	0.686	0.634	0.581	0.528	0.475	0.422	0.370	0.317	0.26
85	0.802	0.752	0.732	0.702	0.652	0.602	0.552	0.502	0.451	0.401	0.351	0.301
90	0.812	0.764	0.745	0.716	0.669	0.621	0.573	0.525	0.478	0.430	0.382	0.335
95	0.820	0.775	0.757	0.729	0.684	0.638	0.593	0.547	0.501	0.456	0.410	0.365
100	0.828	0.785	0.767	0.741	0.698	0.654	0.610	0.567	0.523	0.479	0.436	0.392
105	0.835	0.794	0.777	0.752	0.710	0.668	0.626	0.585	0.543	0.501	0.459	0.418
110	0.842	0.802	0.786	0.762	0.723	0.682	0.642	0.601	0.561	0.521	0.481	0.441
115	0.848	0.810	0.794	0.771	0.734	0.694	0.655	0.617	0.578	0.540	0.501	0.463
120	0.854	0.817	0.802	0.780	0.742	0.705	0.668	0.631	0.594	0.557	0.520	0.483

TABLE 1 - DRAWDOWN FACTORS

(Use Gauge Pressure)

Top of the System

Reduces the size of the tank
Alleviates exceeding max working pressure of the tank
Transporting the tank to the top of the building must Be considered

Tank at High Point

Booster size 124 GPM @ 58 PSIG 40 PSIG Minimum Suction
 15 Minute Booster Shutdown

From Page 40: Draw down coefficient $=\underline{.168}$
Minimum Tank Volume $=\frac{9.5 \text { Gallons }}{.168}=57$ Gallons

Pre-Charge Pressure for Hydro Pneumatic Tanks

Please pre-charge with air the Hydro-Pneumatic tank at initial pressure less 10 psi to prevent sudden pressure drops before the system cycles back on.

88 psig initial pressure (pre-charge to 78 psig)
33 psig initial pressure (pre-charge to 23 psig)

* Please specify on your drawing

Hydro Pneumatic Pressure Tank Relief

(ICC - International Plumbing Code)

606.5.10 Pressure relief for tanks. Every pressure tank in a hydropneumatic pressure booster system shall be protected with a pressure relief valve. The pressure relief valve shall be set at a maximum pressure equal to the rating of the tank. The relief valve shall be installed on the supply pipe to the tank or on the tank. The relief valve shall discharge by gravity to a safe place of disposal.

Pressure Booster Pumping Applications

Constant Speed

vs.
Variable Speed Considerations

ASHRAE STANDARD

CHAPTER 10 OTHER EQUIPMENT

SECTION 10.4
 Mandatory Provisions

10.4.2 Service Water Pressure Booster Systems. Service water pressure booster systems shall be designed such that:
a. One or more pressure sensors shall be used to vary pump speed and/ or start and stop pumps. The sensor(s) shall either be located near the critical fixture(s) that determine the pressure required, or logic shall be employed that adjusts the setpoint to simulate operation of remote sensor(s).
b. No device(s) shall be installed for the purpose of reducing the pressure of all of the water supplied by any booster system pump or booster system, except for safety devices.
c. No booster system pumps shall operate when there is no service water flow.

Constant Speed Pressure Boosters using Pressure Reducing Valves are obsolete October 18 ${ }^{\text {th }}, 2013$

(Constant Speed Dead)

All pressure boosters will become variable speed with no across the line constant speed bypass. A constant speed bypass may lead to discharge pressure being to high.
"It's The Law"

Why

Five Factors to Consider

- Pump Over Sizing
- Variable System Head Loss
- Pressure Reducing Valve Losses
- Changing System Loads
- Changing Suction Pressure

Pump Over Sizing

A conservative estimate (or guess) for system flow diversity is often used which results in an oversized pump

"Hunter" Estimate Curves for Demand Load ${ }_{137}$

Variable Head Loss

As flow decreases, friction loss also decreases.
Constant speed boosters don't take this into account.

PRV Pressure Drop

Pressure reducing valves typically have a pressure drop of up to 5-8 psi which must be taken into account when sizing the pump/motor.

Varying System Loads

Booster systems experience widely varying system loads during the course of a day

Varying Suction Pressure

When not drawing
from a tank, booster systems can experience a widely varying suction pressure.

System Efficiency

Maximum Design System Flow $=400$ GPM Required Discharge Pressure = 74 PSIG

30 psig residual pressure
24 psig static pressure
20 psig friction head loss
Minimum Suction Pressure $=20$ PSIG
Required Boost $=54$ PSIG

Domestic water pressure boosting system with adjustable frequency pump drives.

Maximum Design System Flow $=400$ GPM Required Discharge Pressure $=74$ PSIG

30 psig residual pressure
24 psig static pressure
20 psig friction head loss

Critical Fixture
Remote pressure sensor
Minimum Suction Pressure $=20$ PSIG
Required Boost $=54$ PSIG

Automatic

 AFD BypassCity
Main

35 PSIG
Minimum

Preventer 10 PSI Drop

Water Meter 5 PSI Drop

20 PSIG Minimum

Constant-speed domestic water pressure boosting system with a single 20 hp, 3500 rpm pump and a 4 in . pressure reducing valve. Design conditions are 400 gpm at 125 ft boost.

Relationships for Remote Sensor
 (Mounted at Critical Fixture)

Setpoint = Residual Pressure

30 PSIG

Domestic water pressure boosting system with adjustable frequency pump drives.

Maximum Design System Flow $=400$ GPM Required Discharge Pressure $=74$ PSIG

30 psig residual pressure
24 psig static pressure
20 psig friction head loss

Critical Fixture
Remote pressure sensor
Minimum Suction Pressure $=20$ PSIG
Required Boost $=54$ PSIG

Automatic

 AFD BypassCity
Main
35 PSIG
Minimum

Pressure Booster
System

Effects of Sensor Location on Example System

Local Sensor
 Remote Sensor

74 psig
30 psig

Speed reduction achievable

Significant head reduction at lower flows
Little change with flow

10 percent
26 percent

Control curve

AOC Review

Two constant speed pumps, \$6,792/yr. 50/50 percent split

Two variable speed pumps, local sensor, 50/50 percent split
\$3,566/yr.
Two variable speed pumps. remote sensor, 50/50 percent split
\$2,537/yr.

The Smart \$aver™ Incentives Program Carolinas

Using high-efficiency pumps and variable-frequency drive systems with high-efficiency motors can significantly increase savings. Pump curves are required along with the application to receive a rebate.

Motor Incentives

For all motor operations > 2000 hours per year

HP	Incentives
From 1 hp to 5 hp	$\$ 10.00 / \mathrm{hp}$
From 25 hp to 100hp	$\$ 5.00 / \mathrm{hp}$

Note: Efficiency ratings are based on NEMA Premium ${ }^{\text {™ }}$ standards.
Visit www.duke-energy.com for required efficiency levels.

Pump Incentives

For all pump operations > 2000 hours per year

HP	Incentive
From 5 hp to 20 hp	From \$170.00 to $\$ 400.00 /$ pump

Note: Based on the pump curve, efficiencies must meet the standards outlined. Visit www.duke-energy.com for required efficiency levels.

Variable Frequency Drives
For VFD operations applied to Chilled Water Pumps > 2000 hours per year

HP	Incentive
From 1.5 hp to 50 hp	Up to $\$ 110.00 / \mathrm{hp}$

Visit www.duke-energy.com for required efficiency levels.

A cool way to lower your operating costs

Cooling commercial or industrial facilities can be costly. High-efficiency cooling equipment can cut summer energy costs significantly. Whether building, remodeling, or replacing existing equipment, high-efficiency cooling equipment saves energy and money.

Cooling Equipment and Water Heating Incentives
For cooling operations > 1500 hours per year

Units	Incentives
Unitary \& Rooftop A/C or Heat Pumps	Up to \$40.00/ton
Air/Water-Cooled Chillers	Up to \$25.00/ton
Heat Pump Water Heaters	Up to \$9,000.00/unit
Setback Programmable Thermostats	$\$ 50.00 /$ thermostat

Note: Incentive amounts vary depending on Efficiency Ratings and BTUH ranges.
For specific details, visit www.duke-energy.com.

ASHRAE STANDARD

States to Use 90.1-2010 by Oct. 18, 2013

WASHINGTON—ASHRAE's Washington office is reporting that the U.S. Department of Energy (DOE) has determined that ANSI/ ASHRAE/IES Standard 90.1-2010, Energy Standard for Buildings Except Low-Rise Residential Buildings, saves more energy than Standard 90.1-2007. Specifically, DOE found national source energy savings of approximately 18.2%, and site energy savings of approximately 18.5%, when comparing the 2010 and 2007 versions of Standard 90.1. As a result of this week's DOE final determination, states are required to certify by Oct. 18, 2013 that that have reviewed the provisions of their commercial building code regarding energy efficiency and updated their code to meet or exceed Standard 90.1-2010.

CHAPTER 10 OTHER EQUIPMENT

SECTION 10.4
 Mandatory Provisions

10.4.2 Service Water Pressure Booster Systems. Service water pressure booster systems shall be designed such that:
a. One or more pressure sensors shall be used to vary pump speed and/ or start and stop pumps. The sensor(s) shall either be located near the critical fixture(s) that determine the pressure required, or logic shall be employed that adjusts the setpoint to simulate operation of remote sensor(s).
b. No device(s) shall be installed for the purpose of reducing the pressure of all of the water supplied by any booster system pump or booster system, except for safety devices.
c. No booster system pumps shall operate when there is no service water flow.

Required Addition to all Pressure Booster Master Specifications

To meet ASHRAE 90.1-2010 standard and DOE building code requirement by October 18th, 2013 the variable speed pressure booster shall control to a remote sensor at the critical fixture or logic to vary the local discharge pressure setpoint based on demand to simulate the operation of a remote sensor.
"It's The Law"

Thank you for coming!

Web Site: http://www.jmpco.com

