Needs Analysis for High Purity Water System Design

Mike Schaefer, PE, CWS-IV

Culligan Industrial

Minnetonka, MN

Herculaneum, MO

...OF all the Earth's Water

- Oceans cover 71% of the earth's surface and contain 97% of all the water
- The remaining 3% is fresh water!
 - 75% of that is locked up in polar icecaps
 - 24% of that is stored too deep beneath the surface to get to
 - That leaves 1% of the 3% left in lakes, rivers, and accessible aquifers (20% of that is in the Great Lakes)

Municipal & Community Drinking Water

Improved drinking water

High Purity Water

- One of best solvents in the world
- Applications
 - Cleaning/Rinsing
 - Steam Generation
 - Dilution
 - General use
- Markets
 - Pharma
 - Power
 - Semiconductor
- Each industry has its own specifications and consequences for being out of compliance
 - Driven by instrumentation and monitoring

Food & Beverage

CRITICAL ISSUES AND APPLICATIONS

High purity water for ingredient, beverage and fluid mixing
Process water
Utility water for production
Boiler feed water make-up
Clean in place
Wastewater minimization
Sanitization

Food Service / Restaurants

WATER TREATMENT USES

Boiler/hot water heater pre-treatment
Dish washers and glass washers
Steamers and steam tables
Drinking water and coffee filtration
Beverage and ice pre-filtration

Oil & Gas

CRITICAL ISSUES AND APPLICATIONS

RO or ultra-softwater water for oil field steam injectors

Cooling tower make-up water
Oil platform drinking water systems
Wastewater discharge for regulatory
compliance

Micro-organism control
Water re-use and wastewater minimization

Energy & Power

CRITICAL ISSUES AND APPLICATIONS

Boiler and cooling tower makeup water
Cooling tower re-use
Waste water discharge quality compliance
Overall onsite water management and
wastewater minimization
Condensate polishing
High pressure boiler feed water specifications

Educational Facilities

WATER TREATMENT USES

Boiler / hot water heater pre-treatment Cooling towers & chillers Food service / beverage & ice filtration Athletic programs Custom teaching facilities (i.e. science labs)

Grocery

WATER TREATMENT USES

Produce misters - water treatment Vended water Food & beverage preparation Cooling & chilling systems Drinking water systems

Small Manufacturer High-quality water, promotes consistent production.

WATER TREATMENT USES

Boiler / hot water heater pre-treatment Process applications Cooling & chilling systems Drinking water appliances

Healthcare / Hospitals / Biopharmaceutical

CRITICAL ISSUES AND APPLICATIONS

Multi megaohm *ultra-pure* water UV sanitization and sterilization Factory Acceptance Testing (FAT, IQ, OQ, PQ)

Validated Acceptance Testing (VAT)

Healthcare Professionals

WATER TREATMENT USES

Boiler / hot water heater pre-treatment Cooling towers & chillers Food service Laundry facilities Laboratories & research rooms

Hemodialysis

Cleans the blood by ridding the body of harmful wastes, extra salts and fluids.

Controls blood pressure and helps the body keep a proper balance of electrolytes such as potassium, sodium, and chloride.

Dialysis Equipment Process Overview

Source Water

Municipal Tap or Well

Water Tx System

Filtration
De-chlorination
Softening
Reverse Osmosis
Deionization
Ultra-Filtration

Dialysis Patient

Dialysis Equipment

Filters blood, removes
Toxins & excess fluids;
Mixes & Monitors the
Dialysis Solution
From Purified Water &
Concentrates

Why "Treat" the Water for Hemodialysis?

Why Water Must be Treated

Average Person

- Drinks 14 liters of water/week
- GI tract more selective
- Functioning kidney

Liters

Person on Hemodialysis

- Blood is exposed to 360⁺ liters of water/ week
- Dialyzer membrane is thin, nonselective
- Nonfunctioning kidney
- <u>Can experience harm or death</u> from untreated water

350 - 450

Liters

HOW IS A DESIGN SELECTED?

- **CUSTOMER PREFERENCE**
- CLEANLINESS OF FEEDWATER
- WATER QUALITY REQUIRED
- WATER QUANTITY REQUIRED
- WASTEWATER VOLUME

Comparison of Drinking Water and Dialysis Water Standards*						
Contaminant	SDWA National Primary & (Secondary) Drinking Water Regulations, mg/L**	Dialysis Water: AAMI/ANSI Maximum Allowable Chemical Contaminant Levels, mg/L*** 0.01				
Aluminum	0.05 - 0.2					
Arsenic	0.05	0.005				
Barium	1.0	0.1				
Cadmium	0.005	0.001				
Calcium	_	2.0				
Chloramine as Cl2	4.0 MRDLG	0.1				
Chlorine (free) as Cl2	4.0 MRDLG	0.5				
Chromium	0.05	0.014				
Copper	1.0 & 1.3 TT Action Level	0.1				
Fluoride	2.0 & 4.0	0.2				
Lead	0.015 TT Action Level	0.005				
Magnesium	_	4.0				
Mercury	0.002	0.0002				
Nitrate (N)	10.0	2.0				
Potassium	_	8.0				
Selenium	0.05	0.09				
Silver	0.1	0.005				
Sodium	_	70.0				
Sulfate	250	100.0				
Zinc	5.0	0.1				

Typical Guidelines

Water Standards / Guidelines

	Microelectronics	Power	ASTM		Pharmaceutical	
	electronics grade		Type I	Туре	USP27	
	QR 1.2			II		
Conductivity	.0546	< 0.10	<0.056	<1.0	<1.3	
(μS/cm)						
Resistivity (M Ω -cm)	18.2	>10.0	18.0	>1.0	>0.769	
TOC (ppb)	<50		50	50	<500	
Silica (ppb)	<5	<10	<3	<3	none	
Bacteria (cfu/ml)	<10	none			<100	
Chloride (ppb)	< 0.1	<10	1	5	none	
Sulfate (ppb)	0.1	<10	_		none	
Sodium (ppb)	<0.5	<10	1	5	none	

Variables that may effect system quality

- Changes in pressure or availability to a constant/ consistent municipal water supply.
- Significant changes in pH
- Chlorination disinfectant type used & residual levels
- Marked increased in levels of Fluoride, Aluminum, Zinc, Sulfates or Nitrates*

Particle Size Scale

0.0001		0.01	0.1	1.0	10	100	
Micron		Micron	Micron	Micron	Micron	Micron	
Disso	olved	Suspended					

One micron = One millionth of a meter

Water Purity Grades (ionic)

- Municipal water: 100-500 ppm TDS
- Reverse Osmosis water 5-80 ppm TDS
- Two-Bed DI water
 1-5 ppm TDS
- Mixed Bed DI water .04-.5 ppm TDS

(pure water will conduct almost NO electricity)

Common System Design

- Pretreatment
 - Multi media / Cartridge filtration
 - Softener
 - Carbon
- Main Treatment
 - Reverse Osmosis
 - Ion exchange
 - Electrodionization
- Post treatment
 - Ultraviolet light
 - Final filtration (absolute barrier)
- Distribution
 - Storage tank
 - Ultraviolet light
 - Point of use filtration

Typical Water Treatment System for Dialysis

Direct Feed RO system

-uses permeate pressure for delivery

Water Softening

- Removes hardness minerals by ion exchange
 - Calcium, Magnesium, Iron are exchanged with Sodium
 - Used for aesthetic improvements for soap savings
 & scale reduction (laundry, dishware, boiler feed)
 or pretreat to Reverse Osmosis
 - Uses salt as a regenerant to "refresh" the media;
 its capacity between regens CAN be calculated accurately

Water Softening (cont.)

- When "salted" at 10 lbs per cubic foot of resin, the softener will be able to "exchange" 25,000 grains of hardness
- If your water supply has 12 grains of hardness in each gallon, each cu.ft. of resin will be able to remove the hardness from 2080 gallons of water.
- If you have a 10 cu.ft. water softener, the capacity between regenerations is roughly 20,000 gallons

Softener Technology Improvements

- Brine Recovery
 - Reclaim a portion of the "Sweet Brine" discharge during regeneration to provide makeup water for next brining cycle
 - Salt savings range from 15-20%
 - Lower environmental impact

Activated Carbon Adsorption

Adsorbs organics, chlorine, taste, odors

Typically configured in media tank with autobackwash control valve, and is sized based upon anticipated flow rate and EBCT

Can flow at 7-8 gpm per square foot of media, or 2-2.5 gpm per cu.ft. of media

EBCT

Empty Bed Contact Time

- The amount of time the feed water is in contact with the activated carbon
- For Dialysis, 10 minutes minimum
- For Commercial dechlor: 4-5 minutes
- For Industrial: Application driven
- EBCT = (cubic feet GAC)x 7.48 gal/cu.ft.
 - » GPM feed flow

Reverse Osmosis Overview

Reverse Osmosis Theory

Cross Flow Filtration

The spiral membrane is constructed of one or more membrane envelopes wound around a perforated central tube. The permeate passes through the membrane into the envelope and spirals inward to the central tube for collection.

The illustration above represents a simplified spiral-wound membrane element. Recovery can be as high as 90% and systems may be capable of chemical cleaning in place (CIP).

RO Element Recovery

The ratio of permeate flow to feed flow of an individual membrane within an RO machine.

(element permeate rate / feed rate) * 100 Usually a maximum of 15% per element

Reverse Osmosis Terminology

- Permeate: the portion of feed solution passed thru the semi-permeable membrane
- Concentrate: the portion of feed solution retained by the semi-permeable membrane
- **Passage**: the percentage of dissolved ions which passes thru the membrane with permeate
- Rejection: the percentage of dissolved ions which do not pass thru the membrane
- Low-Energy Membrane Technology: lower hp required

Example

- Water has TDS (total dissolved solids) of 500 ppm
- If RO produces 95% rejection the product water will have 25 ppm TDS

Reverse Osmosis Terminology (cont)

- Recovery: the ratio of permeate rate to feed rate
- Concentration Factor: a measure of how concentrated the concentrate (reject) stream will be for a set recovery

•	Recovery	Concentration Factor
	20%	1.25 x feed
	33%	1.5 x feed
	50%	2 x feed
	66%	3 x feed
	75%	4 x feed
	90%	10 x feed

Typical recoveries range from 50-75%

Multi-Stage RO System

Reject staged

With Reject Recycle

Allows for higher recoveries, reduced pump horse power, and lower feed flow requirements

Effects of Temperature on Production

 Rated Membrane production is based upon feed water temperature of 77 deg.F

 There is a 1-1.25% effect on product output per 1 degree: Gain if above 77, loss if below 77deg

Consider the effect of pressure on RO Production

- Membrane output has an almost linear relationship with average membrane pressure
- An RO running at 220psi will produce approx.
 35% more water than one operating at 160psi.
- If the permeate back pressure is 60psi, an RO operating at 220psi pump pressure will produce like one operating at 160psi

The Needs Analysis

Qualitative Analysis

- Finished Water Quality to Meet Internal QC or Industry Standards
- Different Areas of the Facility May Need
 Different Quality
- InstrumentationRequirement to MeetQC Standards

Quantitative Analysis

- Total Daily Requirement
- Peak Demand Periods
- Instantaneous Demand
- Minimum Flow Rates to Ensure Quality Standard

Quantitative Analysis

- Usually requires cooperative efforts of the engineer, awareness of industry standards, and input/feedback from the end-user.
- Usually requires Site Visits to Gain the necessary understanding of the end-user's process.
- Always requires confirmation by the end-user, preferably in writing

Quantitative Characteristics

 Data is best gathered and organized in Chart or Spreadsheet, sorted by TIME and USAGE

Data is gathered to represent a typical Peak
 24-hour period

 Individual Loads are identified and data collected for each load

TIME	PERIOD
------	---------------

GALLONS

4:00 AM	5:00 AM	Maintenance
5:00 AM	6:00 AM	Maintenance
6:00 AM	7:00 AM	
7:00 AM	MA 00:8	
8:00 AM	9:00 AM	200
9:00 AM	10:00 AM	100
10:00 AM	11:00 AM	200
11:00 AM	12:00 AM	300
12:00 AM	1:00 PM	
1:00 PM	2:00 PM	200
2:00 PM	3:00 PM	200
3:00 PM	4:00 PM	250
4:00 PM	5:00 PM	200
5:00 PM	6:00 PM	
6:00 PM	7:00 PM	
7:00 PM	8:00 PM	
8:00 PM	9:00 PM	200
9:00 PM	10:00 PM	100

Usage Patterns

- Batch-Type Usage vs Steady/Continuous Use
- Periods of Inactivity followed by heavy usage
- Maintenance or CIP Clean-In-Place needs
- Time means Money in Production
- Multiple points of use (POU) demands
 - Overlap Cumulative usage
 - Staggered Usage

Storage and Delivery

 Once Usage Patterns are logged, instantaneous needs (GPM and Gallons/Batch) are balanced with Overall Quantity Required

Ex: The daily need for high quality water is 1500 gallons, but 800 of it is needed to fill a batch tank in 20 minutes. Demand is 40 gpm, then 700 gallons over 7 ½ hours (approx 10 gpm).

- Distribution piping will need to be 1 ½", not 1".
- Minimum of 800 Gallons of high purity water will need to be produced and stored, ready for that one batch.
- Quality must be kept within tolerance during that storage period, prior to use.

Types of Usage

- Batch process for ingredient production
- Humidification, boiler feed
- Final Rinse down of parts to remove solvents
- Blood analyzers
- Kidney Dialysis
- Laboratory, for glassware rinsing, reagent prod
- Pharmaceuticals
- Machine coolant make up

Needs Analysis Chart

REVERSE OSMOSIS UNIT AND STORAGE TANK SIZING

RO PRODUCTION: ____ GPH TANK SIZE : ____

The Needs Analysis Chart

- Illustrates when and where the peak demands in usage occur
- Aids in the sizing of the Storage Tank and the Distribution piping and polishing filters
- Allows the engineer to collaborate with the end-user to consider production patterns that will minimize equipment/distribution sizing(COST) while still maintaining quality.

EXAMPLE

Direct Feed RO system

-uses permeate pressure for delivery

